SiC Diode and MOSFET product portfolio
Low stray inductance power module

Pascal Ducluzeau – BDM power modules
Discrete & Integrated Solutions Group

Fortronic, Modena
June 28th, 2018
SiC Target Markets and Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Power Supplies</th>
<th>Plasma</th>
<th>Laser and Welding</th>
<th>Medical</th>
<th>Aviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive</td>
<td>• PFC</td>
<td>• Semi-Cap</td>
<td>• Machine Tools</td>
<td>• MRI</td>
<td>• Actuation</td>
</tr>
<tr>
<td>• External Charger</td>
<td>• High-Power Topologies</td>
<td>• Industrial Glass</td>
<td>• Drilling</td>
<td>• X-Ray</td>
<td>• Air Conditioning</td>
</tr>
<tr>
<td>• Onboard Charger</td>
<td>• SMPS</td>
<td>• PV Cells</td>
<td>• Marking</td>
<td>• RF Scalpel</td>
<td>• Power Distribution</td>
</tr>
<tr>
<td>• Powertrain</td>
<td></td>
<td>• Flat Panel Displays</td>
<td>• Cutting</td>
<td>• Diathermy</td>
<td>• Power Generation</td>
</tr>
<tr>
<td>• DC/DC converter</td>
<td></td>
<td>• Hazardous Gas Treatment</td>
<td>• Welding</td>
<td>• Chemical Analysis</td>
<td></td>
</tr>
<tr>
<td>• KERS & HERS</td>
<td></td>
<td>• Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Products** | | | | | |
| • SIC Diodes |
| • SIC MOSFETs |
| • Si MOSFETs |
| • Si IGBT |
| • Si Diodes |
| • Si/SiC Power Modules | | | • Si/SiC Power Modules | | |

© 2018 Microsemi
SiC Discrete MOSFET
Microsemi Next-Generation SiC MOSFETs
Differentiation

- Highest UIS rating
- High SCWT rating
- Low $R_{DS(on)}$
- Low ESR $R_g<1.5\Omega$
- Low $R_{DS(on)}$ variation over temperature
- Well-positioned in market
- Hi-Rel legacy (extreme environment, high performance aviation)
- Business
- Only major US-based SiC vendor (Defense/Space)
- Cost competitive

© 2018 Microsemi
SiC MOSFET: Design for Ruggedness

- High yield process, high reliability
- Excellent gate integrity, verified through TDDB* and HTGB**, high gate yield
- High UIS*** capability: ~ 10 -15 J/cm², ~1.5x - 2x higher than competition
- High short circuit rating ~2 µS - 4 µS, 1.5x - 5x higher than competition

* TDDB = Time Dependant Dielectric Breakdown
** HTGB = High Temperature Gate Bias
*** UIS = Unclamped Inductive Switching
RUlS-TDDB Gate Oxide Stress Tests Vs. Competition

- Two major metrics for comparison
 - Average time to breakdown
 - Dispersion of the lifetime distribution

- Microsemi’s robust next generation 1200 V, 40 mΩ SiC MOSFET
 - Excellent gate oxide shielding and channel integrity
 - No gate oxide lifetime degradation even after 100 K Repetitive-UIS

- Competitor devices showed degradations in either metrics compared to Microsemi SiC MOSFET

The TDDB test condition is constant current 50 uA @ room temperature

* RUIS = Repetitive Unclamped Inductive Switching
** TDDB = Time Dependant Dielectric Breakdown
Key Electrical Performance Needs

- Low Rdson (via large area dies) decreases component count and improves reliability
- Low Rdson variation over temperature – lowers requirements for cooling and reduces die count (~50-60% for SiC FETs vs. ~250% for Si superjunction)
“Average Star” Design Approach

- Datasheet parameters well centered (“Average”)
- Easy drop-in replacement to existing SiC designs
- Enables multiple vendor sourcing
- Differentiate (“Star”) via reliability and robustness
SiC MOSFETs have 10X lower FIT rate than comparable Si IGBTs @ rated voltage

Microsemi SiC MOSFETs perform well against competition re. neutron irradiation
Next Generation SiC MOSFET Products

<table>
<thead>
<tr>
<th>Voltage</th>
<th>$R_{DS(on)}$(typical)</th>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 V</td>
<td>90 mΩ</td>
<td>MSC090SMA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>60 mΩ</td>
<td>MSC060SMA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>35 mΩ</td>
<td>MSC035SMA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>15 mΩ</td>
<td>MSC015SMA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td>1200 V</td>
<td>280 mΩ</td>
<td>MSC280SMA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>140 mΩ</td>
<td>MSC140SMA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>80 mΩ</td>
<td>MSC080SMA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>40 mΩ</td>
<td>MSC040SMA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>25 mΩ</td>
<td>MSC025SMA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td>1700 V</td>
<td>750 mΩ</td>
<td>MSC750SMA170B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>45 mΩ</td>
<td>MSC045SMA170B</td>
<td>TO-247</td>
</tr>
</tbody>
</table>

- **Sampling**
 - MSC040SMA120B
- **AEC-Q101 planned for 1200 V and 700 V SiC MOSFETs**
Next-Generation SiC Diode Nomenclature

MSC 040 SMA 120 B

MSC = Microsemi Corporation

RDS_{ON}
015 = 15 mΩ
025 = 25 mΩ
035 = 35 mΩ
040 = 40 mΩ

S: Silicon Carbide (SiC)
M = MOSFET
A = Revision or generation

Package code
B = TO-247
K = TO-220
S = D^3PAK
J = SOT-227

Voltage
070 = 700 V
120 = 1200 V
170 = 1700 V
SiC Discrete diode
SiC Diodes: Design for Ruggedness

- Improved avalanche ruggedness for Unclamped Inductive Switching (UIS) rating.
- The design needs to be optimal such that the device breakdown under UIS needs to be:
 - constrained to happen in the active area instead of the terminations
 - uniform without the presence of prominent hotspots, indicating weak areas

Backside emission imaging of SiC SBD at the onset of avalanche
SiC Diodes: Design for Ruggedness

- Passed 1000hrs HTRB (960V, 175C), 10,000 power cycles (up to Tj=100C)
- High UIS capability
- R-UIS better indicator than single-shot UIS
- High R-UIS capability at >10K hits at rated current with no degradation or failures
“Average Star” Design Approach

- Datasheet parameters well centered ("Average")
- Easy drop-in replacement to existing SiC designs
- Enables multiple vendor sourcing
- Differentiate ("Star") via reliability and robustness

Datasheet comparisons normalized to Microsemi MSC10SDA120B 10 A/1200 V TO-247 SiC Diode

- Datasheet parameters well centered ("Average")
- Easy drop-in replacement to existing SiC designs
- Enables multiple vendor sourcing
- Differentiate ("Star") via reliability and robustness
Next Generation SiC Schottky Barrier Diode Products

<table>
<thead>
<tr>
<th>Voltage</th>
<th>I_{avg}</th>
<th>V_F</th>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>10</td>
<td>1.5</td>
<td>MSC010SDA070K</td>
<td>TO-220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC010SDA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.5</td>
<td>MSC030SDA070K</td>
<td>TO-220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC030SDA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.5</td>
<td>MSC050SDA070B</td>
<td>TO-247</td>
</tr>
<tr>
<td>1200</td>
<td>10</td>
<td>1.5</td>
<td>MSC010SDA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC010SDA120K</td>
<td>TO-220</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.5</td>
<td>MSC015SDA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.5</td>
<td>MSC030SDA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC030SDA120K</td>
<td>TO-220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC030SDA120S</td>
<td>D³PAK</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.5</td>
<td>MSC050SDA120B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSC050SDA120S</td>
<td>D³PAK</td>
</tr>
<tr>
<td>1700</td>
<td>10</td>
<td>1.5</td>
<td>MSC010SDA170B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.5</td>
<td>MSC030SDA170B</td>
<td>TO-247</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.5</td>
<td>MSC050SDA170B</td>
<td>TO-247</td>
</tr>
</tbody>
</table>

Sampling
- MSC010SDA120B
- MSC030SDA120B
- MSC050SDA120B

AEC-Q101 qualification on going for 1200 V and 700 V SiC SBDs
Next-Generation SiC Diode Nomenclature

MSC 010 SDA 120 B

MSC = Microsemi Corporation

Current
010 = 10 A
015 = 15 A
030 = 30 A
050 = 50 A

S: Silicon Carbide (SiC)
D = Diode
A = Revision or generation

Package code
B = TO-247
K = TO-220
S = D³PAK
J = SOT-227

Voltage
070 = 700 V
120 = 1200 V
170 = 1700 V
SiC Power Modules
SiC power module allows higher power density

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Microsemi APTGLQ300A120G</th>
<th>Microsemi APTMC120AM20CT1AG</th>
<th>Comparison SiC vs Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor type</td>
<td>Trench4 IGBT</td>
<td>SiC MOSFET</td>
<td></td>
</tr>
<tr>
<td>Ratings @ Tc=25°C</td>
<td>500 A/1200 V</td>
<td>143 A/1200 V</td>
<td>~3.5 x lower</td>
</tr>
<tr>
<td>Package type</td>
<td>SP6 – 108x62 mm</td>
<td>SP1 – 52x41 mm</td>
<td>~3.0 x smaller</td>
</tr>
<tr>
<td>Current @ 30 kHz</td>
<td>130 A</td>
<td>130 A</td>
<td>-</td>
</tr>
<tr>
<td>Tc=75°C, D=50%, V=600 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current @ 50 kHz</td>
<td>60 A</td>
<td>115 A</td>
<td>~2.0 x higher</td>
</tr>
<tr>
<td>Tc=75°C, D=50%, V=600 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eon+Eoff @ 100 A</td>
<td>16.0 mJ</td>
<td>3.4 mJ</td>
<td>~5.0 x lower</td>
</tr>
<tr>
<td>Tj=150°C, V=600 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MORE POWER @ HIGHER SWITCHING FREQUENCY in SMALLER VOLUME
Packaging and power density

- Low parasitic inductance package is essential to get all benefit for fast switching speed semiconductors as SiC.
- At 15 kA/µs typical switching speed the overvoltage is too high or switching speed must be reduced if parasitic inductance is too high.

<table>
<thead>
<tr>
<th>Package</th>
<th>Height</th>
<th>Stray Inductance</th>
<th>Overvoltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>30 mm</td>
<td>30 nH</td>
<td>450 V</td>
</tr>
<tr>
<td>SP6</td>
<td>17 mm</td>
<td>15 nH</td>
<td>225 V</td>
</tr>
<tr>
<td>SP6P</td>
<td>12 mm</td>
<td>5 nH</td>
<td>75 V</td>
</tr>
</tbody>
</table>

Lowest inductance will allow fastest driving, best efficiency and safe operation.
Very low inductance package: Objectives

- Develop a standard package targeting <5 nH stray inductance to be used in high switching frequency applications with SiC semiconductors.

- Offer a standard footprint package recognized on the market.

- Benefit from one layout to use different die vendors to compare easily different performances and make the right choice for the application.
Very low inductance package: Realization

- Optimized layout for multi SiC MOSFET and Diode chips assembly in phase leg topology.
- Symmetrical design to accept up to 12 SiC MOSFET chips in parallel per switch to offer a total $R_{\text{DS\text{ON}}} \text{ down to } 2 \, \text{m}\Omega \text{ per switch.}$
- All die in parallel with its own gate series resistor for homogenous current balancing.
- High current capability up to 600A at very fast switching frequency.
- Optional mix of assembly materials to better address various markets and applications:
 - AlN or Si3N4 substrates
 - Copper or AlSiC baseplates
 - Pin fins base plate option for direct liquid cooling
Very low inductance package: Description

SP6LI package
- Very low stray inductance
- High frequency performance
- 1200V & 1700V SiC MOSFET & anti-parallel Diode
- Rdson down to 2 mΩ
- Screw terminals for signal & power
- Phase leg configuration
- AlN or Si3N4 substrate
- Copper or AlSiC baseplate
- Temperature sensor (NTC)
- Standard package footprint 62 x 108 mm
- 17 mm height
The very low stray inductance is achieved thanks to:

- Connections to the substrate as close as possible to the chips
- Bus bars for DC connections
- Strip line design for DC link
- Symmetrical Layout
The stray inductance of the DC link is simulated with the software Comsol. The signal is applied between the two screw locations for Vbus and the return O/Vbus.

The parasitic inductance varies from 3.58 nH at 100 KHz to 3.38 nH at 1 MHz and confirms good values well below the 5 nH target.

Homogeneous temperature distribution for both the SiC Mosfet and SiC diode devices and confirms a $R_{thjc \ max} = 0.057 \ K/W$ for the SiC Mosfet and $0.112 \ K/W$ for the SiC diode.

High frequency current homogeneous distribution on the substrate.
Very low inductance package: Test results

DC bus connections must be routed to the module with very low parasitic inductance.

- A decoupling PCB is mounted on the module with the DC connections distributed in strip line.
- Ceramic capacitors are mounted as close as possible from the power connections.
- A window is open in the PCB to insert a rogowski current probe to monitor the switch current.

- V_{bus} is measured on the power connectors.
- V_{chip} is measured on the substrate as close as possible of the power die.
- $dV = V_{chip} - V_{bus} = 75$ V
- $di/dt = 25.7$ A/ns

Module stray inductance
$L_s = 2.9$ nH
Very low inductance package: Test Results

MSCMC120AM02CT6LINMG – 1200 V/2 mΩ full SiC Phase Leg with AlSiC base plate and Si3N4 substrates

Operating Frequency vs Drain Current

Vbus = 600 V

Id = 600 A

Tj = 150°C

Eon = 8.9 mJ

Eoff = 5.2 mJ

Eon = 8.9 mJ

Eoff = 5.2 mJ

Hard Switching capabilities

540 A @ Fsw = 50 kHz

400 A @ Fsw = 100 kHz

230 A @ Fsw = 200 kHz
Very low inductance package: Test Results

MSCMC120AM02CT6LINMG – 1200 V/2 mΩ full SiC Phase Leg with AlSiC base plate and Si3N4 substrates

- Very low R_{dson}:
 - ~ 4.0 mΩ at $T_J = 150^\circ$C in the forward direction
 - ~ 2.5 mΩ at $T_J = 150^\circ$C in the third quadrant assuming $V_{GS} = 20V$ and $I_D = 600A$
3 phase configuration – flexible assemblies

3 x SP6LI power modules can be connected horizontally or vertically with DC bus bars to achieve a 3 phase configuration

- The best recommendation is to place the modules side by side in the length.
- Distribute the +DC and – DC link via bus bars in strip line that include the capacitor bank.
- In this configuration the DC link distribution is very symmetrical and with very low stray inductance.

- Other alternative is to place the modules side by side in the width
- Distribute the +DC and – DC link via bus bars in strip line
Paralleling SP6 Low Inductance modules

- If a PCB is used to interconnect the modules, ceramic decoupling capacitors should be placed as close as possible from the power terminals for improved stray inductance.
- Layout should be achieved in strip line to achieve minimum parasitic inductance.
- Gate drive signals should also be routed in strip line for minimum parasitic inductance in the control path.
New standard parts

<table>
<thead>
<tr>
<th>PN</th>
<th>Voltage</th>
<th>Current Tc=80°C</th>
<th>Rdson Typ Tj=25°C</th>
<th>Rdson max. Tj=25°C</th>
<th>SiC parallel diode ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCMC120AM07CT6LIAG</td>
<td>1200 V</td>
<td>210 A</td>
<td>6.7 mΩ</td>
<td>9.2 mΩ</td>
<td>100 A</td>
</tr>
<tr>
<td>MSCMC120AM04CT6LIAG</td>
<td>1200 V</td>
<td>307 A</td>
<td>4.2 mΩ</td>
<td>5.6 mΩ</td>
<td>200 A</td>
</tr>
<tr>
<td>MSCMC120AM03CT6LIAG</td>
<td>1200 V</td>
<td>475 A</td>
<td>2.5 mΩ</td>
<td>3.4 mΩ</td>
<td>250 A</td>
</tr>
<tr>
<td>MSCMC120AM02CT6LIAG</td>
<td>1200 V</td>
<td>586 A</td>
<td>2.1 mΩ</td>
<td>2.8 mΩ</td>
<td>300 A</td>
</tr>
<tr>
<td>MSCMC170AM08CT6LIAG</td>
<td>1700 V</td>
<td>207 A</td>
<td>7.5 mΩ</td>
<td>11.7 mΩ</td>
<td>200 A</td>
</tr>
</tbody>
</table>
MSC MC 120 A M02 C T 6LI A _ G

MSC = Trade mark

Semiconductor type:
- **SM** = MSC SiC MOSFET
- **MC** = Wolfspeed

Breakdown Voltage:
- **70** = 700 V
- **120** = 1200 V
- **170** = 1700 V

Rdson:
- **M02** = 02 mOhms
- **M03** = 03 mOhms
- **M08** = 08 mOhms

Electrical topology:
- **A** = Phase Leg

Baseplate Material:
- **M** = AlSiC
 - **Left blank** = Copper

Substrate Material:
- **A** = AlN
- **N** = Si3N4

Package:
- **6LI** = SP6 Low Inductance

Temperature Sensor:
- **T** = Thermistor (NTC)
 - **Left blank** = no NTC

Anti-parallel Diode:
- **C** = added SiC Diode
 - **Left blank** = no diode

G = RoHS compliant
SiC MOSFET module

<table>
<thead>
<tr>
<th>Technology</th>
<th>Topology</th>
<th>BVDS</th>
<th>Current Tc=80°C</th>
<th>Rdson max. per switch Tj=25°C</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTMC120TAM34CT3AG</td>
<td>3-Phase leg</td>
<td>1200 V</td>
<td>55 A</td>
<td>34 mΩ</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC120TAM33CTPAG</td>
<td></td>
<td></td>
<td>58 A</td>
<td>33 mΩ</td>
<td></td>
</tr>
<tr>
<td>APTMC120TAM17CTPAG</td>
<td></td>
<td></td>
<td>110 A</td>
<td>17 mΩ</td>
<td>SP6P</td>
</tr>
<tr>
<td>APTMC120TAM12CTPAG</td>
<td></td>
<td></td>
<td>165 A</td>
<td>12 mΩ</td>
<td></td>
</tr>
<tr>
<td>APTMC120HM17CT3AG</td>
<td>Full Bridge</td>
<td></td>
<td>110 A</td>
<td>17 mΩ</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC120AM55CT1AG</td>
<td>Phase Leg</td>
<td></td>
<td>59 A</td>
<td>50 mΩ</td>
<td>SP1</td>
</tr>
<tr>
<td>APTMC120AM25CT3AG</td>
<td></td>
<td></td>
<td>78 A</td>
<td>25 mΩ</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC120AM16CD3AG</td>
<td></td>
<td></td>
<td>98 A</td>
<td>20 mΩ</td>
<td>D3</td>
</tr>
<tr>
<td>APTMC120AM20CT1AG</td>
<td></td>
<td></td>
<td>108 A</td>
<td>17 mΩ</td>
<td>SP1</td>
</tr>
<tr>
<td>APTMC120AM12CT3AG</td>
<td></td>
<td></td>
<td>165 A</td>
<td>12 mΩ</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC120AM08CD3AG</td>
<td></td>
<td></td>
<td>190 A</td>
<td>10 mΩ</td>
<td>D3</td>
</tr>
<tr>
<td>APTMC120AM09CT3AG</td>
<td></td>
<td></td>
<td>220 A</td>
<td>9 mΩ</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC170AM60CT1AG</td>
<td></td>
<td></td>
<td>40 A</td>
<td>60 mΩ</td>
<td>SP1</td>
</tr>
<tr>
<td>APTMC170AM30CT1AG</td>
<td></td>
<td></td>
<td>80 A</td>
<td>30 mΩ</td>
<td></td>
</tr>
</tbody>
</table>

SiC MOSFET module

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TOPOLOGY</th>
<th>BVDS</th>
<th>Id (A) @ Tc=80°C (A)</th>
<th>RdsON @ Tj=25°C</th>
<th>NTC</th>
<th>PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT50MC120JCU2</td>
<td>PFC</td>
<td>1200 V</td>
<td>50 A</td>
<td>40 mΩ</td>
<td>-</td>
<td>SOT-227</td>
</tr>
<tr>
<td>APT100MC120JCU2</td>
<td></td>
<td></td>
<td>100 A</td>
<td>20 mΩ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>APTMC120HR11CT3G</td>
<td>T-Type</td>
<td></td>
<td>20 A</td>
<td>110 mΩ</td>
<td>YES</td>
<td>SP3F</td>
</tr>
<tr>
<td>APTMC120HRM40CT3G</td>
<td></td>
<td></td>
<td>50 A</td>
<td>40 mΩ</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>APTMC60TL11CT3AG</td>
<td>Three level inverter</td>
<td>600 V</td>
<td>20 A</td>
<td>110 mΩ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>APTMC60TLM55CT3AG</td>
<td></td>
<td></td>
<td>40 A</td>
<td>55 mΩ</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>APTMC60TLM14CAG</td>
<td></td>
<td></td>
<td>160 A</td>
<td>14 mΩ</td>
<td>-</td>
<td>SP6</td>
</tr>
</tbody>
</table>

SiC Diode module

Specifications

600 V

<table>
<thead>
<tr>
<th>V<sub>RRM</sub></th>
<th>Module Type</th>
<th>I<sub>F</sub></th>
<th>V<sub>F</sub></th>
<th>Package</th>
<th>Anti-Parallel Configuration</th>
<th>Parallel Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 V</td>
<td>Dual</td>
<td>20 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X20DC60J</td>
<td>APT2X21DC60J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X30DC60J</td>
<td>APT2X31DC60J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X40DC60J</td>
<td>APT2X41DC60J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X50DC60J</td>
<td>APT2X51DC60J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X60DC60J</td>
<td>APT2X61DC60J</td>
</tr>
</tbody>
</table>

1200 V

<table>
<thead>
<tr>
<th>V<sub>RRM</sub></th>
<th>Module Type</th>
<th>I<sub>F</sub></th>
<th>V<sub>F</sub></th>
<th>Package</th>
<th>Anti-Parallel Configuration</th>
<th>Parallel Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 V</td>
<td>Dual</td>
<td>20 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X20DC120J</td>
<td>APT2X21DC120J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X40DC120J</td>
<td>APT2X41DC120J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X50DC120J</td>
<td>APT2X51DC120J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT2X60DC120J</td>
<td>APT2X61DC120J</td>
</tr>
</tbody>
</table>

Additional Information

- **V_{RRM}**: Rated Reverse Voltage
- **I_F**: Forward Current
- **V_F**: Forward Voltage
- **Package**: SOT-227

Full Bridge

<table>
<thead>
<tr>
<th>V<sub>RRM</sub></th>
<th>Module Type</th>
<th>I<sub>F</sub></th>
<th>V<sub>F</sub></th>
<th>Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 V</td>
<td>Full Bridge</td>
<td>20 A</td>
<td>1.6 V</td>
<td>SP1</td>
<td>APTDC20H601G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SP1</td>
<td>APTDC40H601G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT40DC60HJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT10DC120HJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 A</td>
<td>1.6 V</td>
<td>SP1</td>
<td>APTDC20H1201G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT20DC120HJ</td>
</tr>
<tr>
<td>1200 V</td>
<td>Full Bridge</td>
<td>20 A</td>
<td>1.6 V</td>
<td>SP1</td>
<td>APTDC40H1201G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SP1</td>
<td>APTDC40H1201G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 A</td>
<td>1.6 V</td>
<td>SOT-227</td>
<td>APT40DC120HJ</td>
</tr>
</tbody>
</table>

Links

© 2018 Microsemi
SiC gate driver boards
SiC Module Reference Design Driver
SP3 Power Module Reference Design (MSCSICSP3/REF2)

- Half Bridge Driver
- Up to 400 kHz switching frequency
- 12 V V_{IN} supply
- Capable of 16 W of gate drive power / side
- 30 A Peak Source output current
- Min.100 KV/μS CMTI
- -5 V/+20 V output gate drive
- Low propagation delay variability
- Fault signaling
- Under voltage lockout protection
- Programmable dead time protection
- Desaturation protection
- Screw output terminals

SiC Module Reference Design Driver
SP6LI Power Module Reference Design (MSCSICSP6/REF3)

- Featuring brand **new SP6LI** (Low Inductance)
 - Stray inductance < 3 nH to fully benefit from SiC
 - Designed to be easy to parallel
 - Up to 1200 V and 586 A
- Half Bridge Driver
- Up to 400 kHz switching frequency
- 12 V VIN supply
- Capable of 16 W of gate drive power / side
- 30 A Peak Source output current
- Min.100 KV/µS CMTI
- -5 V/+20 V output gate drive
- Low propagation delay variability
- Fault signaling
- Under voltage lockout protection
- Programmable dead time protection
- Desaturation protection

SiC Module Reference Design Driver
SP1 Power Module Reference Design

- Half Bridge Topology with SiC
 - APTMC120AM20CT1AG
 - APTMC120AM55CT1AG
- 1200 V, 50 A, 200 kHz
- >100 kV/us CMTI
- 12 V VIN supply
- Independent High Side and Low Side PWM inputs (Single control with 70ns deadtime for testing)
- 1xLT3999 + 1xADuM4135 for both High Side and Low Side
- Full tested ‘Desat protection’
- Low inductive and high current terminals for V+, V- and AC phase connection

NEW!
Aerospace Integrated Power Solutions
Power Core Module (PCM)
Actuation Motor Drive Solution using SiC MOSFETs and/or IGBTs

- 5 kVA (540 VDC) 3-phase power inverter
- Designed per Airbus standard PCM specification for flight critical actuation drive
 - Line Replaceable Unit (LRU)
- Full reliability analysis complete
 - Life testing in progress
- Passed all DO-160 Environmental and EMC
- Proven building blocks allow for fast turnaround for customized high reliability solutions
- On-board telemetry monitoring and communication bus

Evaluation Kit Available!!

www.microsemi.com/pcm

www.microsemi.com/ips
Hybrid Power Drive (HPD510 or HPD520)
3 Phase Inverter with Integrated Gate Drive using SiC MOSFETs or IGBTs

- 5 kVA – 20 kVA scalable solutions
- HPD = Hybrid Power Substrate + Integrated Drive
 - Telemetry and control added at the PCM level
- Solutions proven with SiC MOSFETs but can be tailored to IGBT
- HPD510 qualified through Airbus PCM qualification
 - Line Replaceable Unit (LRU)
- HPD520 designed in collaboration with SAFRAN in support of Actuation2015 consortium
 - Fully integrated PCB mounted solution
- Partial Discharge Effects Evaluated

Hybrid Power Drive (HPD510)
www.microsemi.com/hpd

Hybrid Power Drive (HPD520)
www.microsemi.com/hpd
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.